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1 Exponential Family

This section describes a family of probability distributions known as the exponential family of distributions. Many
of the majorly used probability distribution functions belong to the exponential family. A probability density
function (pdf) or probability mass function (pmf) p(y; η), for y ∈ Rl and η ∈ Rn, is in the exponential family if it
can be written in the form

p(y; η) =
1

Z(η)
λ(y) exp{η⊺S(y)}, (1)

= exp{− log(Z(η))︸ ︷︷ ︸
A(η)

}λ(y) exp {η⊺S(y)} ,

= λ(y) exp{η⊺S(y)−A(η)}, (2)

where

Z(η) =

∫
y∈Rl

λ(y) exp{η⊺S(y)} dy (3)

A(η) = log(Z(η)) (4)

Here Z(η) is known as the partition function and A(η) is known as the log-particition function (also called
cumulant function). Partition function, Z(η) (consequently, exp(−A(η))), essentially plays the role of normaliza-
tion constant that makes sure that p(y; η) integrates or sums over y to 1. Here η is called the natural parameter
(it is also called the canonical parameter); S(y) is a vector of sufficinet statistic; and λ(y) is scaling constant.

A fixed choice of S(y), A(η), and λ(y) defines a family of distributions, that is parametrized by η. By varying
η we get different distributions within the family. The next sections show that the Bernoulli and the Gaussian
distributions are examples of exponential family distributions.

1.1 Bernoulli and Gaussian Distributions as Exponential Family

Earlier we covered linear regression and logistic regression (classification). In the linear regression, we had
p(y|x;w) ∼ N (µ, σ2), with µ = w⊺ϕ(x). In the classification (logistic regression), we considered p(y|x;w) ∼
Bernoulli(µ), with µ = 1/{1 + e−w⊺ϕ(x)} = Sigmoid(w⊺ϕ(x)). In this section, we will now show that the Bernoulli
and the Gaussiation distributions are examples of exponential family distributions.

1.1.1 Bernoulli

The Bernoulli distribution (B) for y ∈ {0, 1}, with mean µ is: B(y;µ) = µy(1− µ)1−y. Here p(y = 1;µ) = µ, and
p(y = 0;µ) = 1− µ. By varying µ, we obtain Bernoulli distributions with different means. We now show that the
Bernoulli distribution can be written as an exponential family distribution. We have,

p(y;µ) = µy(1− µ)1−y

= exp{y log(µ) + (1− y) log(1− µ)}

= exp

{
y log

(
µ

1− µ

)
+ log(1− µ)

}
(5)

= λ(y) exp {η⊺S(y)−A(η)} . (6)
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1.1 Bernoulli and Gaussian Distributions as Exponential Family 1 EXPONENTIAL FAMILY
By comparing eq.(5) and eq.(6) we obtain:

λ(y) = 1

η = log

(
µ

1− µ

)
=⇒ µ =

1

1 + e−η
= Sigmoid(η) (7)

S(y) = y

A(η) = − log(1− µ) = log

(
1

1− µ

)
= log(1 + eη).

Thus, Bernoulli distribution is an example of the exponential family distributions.

1.1.2 Gaussian

The univariate Gaussian (Normal) distribution, of y ∈ R with mean µ and variance σ2, i.e., y ∼ N (µ, σ2), is:

p(y;µ, σ2) =
1√
2πσ

exp

{
− 1

2σ2
(y − µ)2

}
=

1√
2πσ

exp

{
− 1

2σ2
y2 +

µ

σ2
y − 1

2σ2
µ2

}
=

1√
2πσ

exp

{[
µ
σ2

− 1
2σ2

]⊺ [
y

y2

]
− µ2

2σ2

}
(8)

=
1

√
2πσ exp

(
µ2

2σ2

) exp

{[
µ
σ2

− 1
2σ2

]⊺ [
y

y2

]}
︸ ︷︷ ︸

1
Z(η)

λ(y) exp(η⊺S(y))

(9)

which gives us that

η =

[
µ
σ2

−1
2σ2

]
(10)

S(y) =

[
y

y2

]
(11)

λ(y) = 1 (12)

Z(η) =
√
2πσ exp

{
µ2

2σ2

}
(13)

A(η) = log(Z(η))

=
1

2
log(2π) + log(σ) +

µ2

2σ2

=
1

2
log(2π) + log

(√
(−2)

−1

2σ2

)
+

µ2

2σ2

A(η) =
1

2
log(2π)− 1

2
log (−2η2)−

η21
4η2

(14)

Recall that in linear regression, we saw that the variance σ2 played no role in the maximum likelihood estimate of
the learnable parameters (weight vector) w, and also it had no effect on the mapping function Fw(ϕ(x)). Thus, we
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1.2 Log Partition Function 1 EXPONENTIAL FAMILY
can ignore σ2, or assume σ2 = 1 when representing the univariate Gaussian as an exponential family distribution.
Thus, we will now represent univariate Gaussian as an exponential family, with σ2 = 1. With σ2 = 1, we have

p(y; η) =
1√
2π

exp

(
−1

2
(y − µ)2

)
=

1√
2π

exp

(
−y2

2

)
exp

(
µy − µ2

2

)
︸ ︷︷ ︸

λ(y) exp(η⊺S(y)−A(η))

(15)

which gives us

λ(y) =
1√
2π

exp

(
−y2

2

)
(16)

η = µ (17)
S(y) = y (18)

A(η) =
µ2

2
=

η2

2
=⇒ Z(η) = exp

(
η2

2

)
(19)

1.2 Log Partition Function

Note that in Section-(1) we mentioned that the log-partition function A(η), is also known as the cumulant func-
tion. This is because the log-partition function can be used to generate the cumulants of the sufficient statistics,
thereby justifying the name cumulant function.

Here we briefly discuss what moments (of a random variable with some distribution) and cumulants are. For a
1-dimensional random variable x, with some distribution p(x), the kth moment, represented as mk is Ex∼p[x

k].
Cumulants are certain non-linear combinations of moments, and they arise naturally when analyzing sums of

independent random varilable. Here we will ignore the discussion of cumulant generation functions. Here we only
discuss the first 4 cumulants of a random variable x. We will represent the kth cumulant as ck, for a 1-dimensional
random varilable x with mk as its kth moment.

c1 = m1 = E[x] −mean

c2 = m2 −m2
1 = E[x2]− E[x]2 −variance

c3 = m3 − 3m1m2 + 2m3
1 −skeweness

c4 = m4 − 3m2
2 − 4m1m3 + 12m2

1m2 − 6m4
1 −kurtosis

In these notes, we refrain from discussing any additional properties of cumulants in general, and interested readers
can find more details in some good statistics text-book. We will now see how the derivatives of A(η) provide us
cumulants. We will only compute the first two cumulants. We have A(η) = log(Z(η)), which gives us A(η) =
log{

∫
λ(y) exp[η⊺S(y)]dy}. We will assume that η is scalar – this was the case for Bernoulli distribution (Section-

1.1.1) and univariate Gaussian (Section-1.1.2) with σ2 = 1. Thus, A(η) = log
∫
λ(y) exp(ηS(y))dy. The first

derivative of A(η) is:

dA(η)

dη
=

d

dη

{
log

∫
λ(y) exp (ηS(y)) dy

}
=

1∫
λ(y) exp (ηS(y)) dy

1

dη

∫
λ(y) exp (ηS(y)) dy

=

∫
S(y)λ(y) exp (ηS(y)) dy

exp(A(η))
(20)
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1.2 Log Partition Function 1 EXPONENTIAL FAMILY
in eq.(20) we just used the definition of A(η). Proceeding further, we get:

dA(η)

dη
=

∫
S(y)λ(y) exp (ηS(y)) dy

expA(η)

=

∫
S(y)λ(y) exp (ηS(y)−A(η)) dy

=

∫
S(y)λ(y) exp (ηS(y)−A(η))︸ ︷︷ ︸

p(y;η)

dy

=

∫
S(y)p(y; η)dy (21)

= E[S(y)] (22)

where we have used the definition of expectation of a function F of some random variable x ∼ p(x), which is given
by Ex∼p(x)[F (x)] =

∫
F (x)p(x)dx, in eq.(21) to obtain eq.(22). Thus, the first derivate of the log-partition function

A(η) provides us the mean (expected value) of the sufficient statistic. Now we will compute the second derivative,
making use of the first derivative computed above:

d2A(η)

dη2
=

d

dη

∫
S(y)λ(y) exp(ηS(y)−A(η))dy

=

∫
S(y)λ(y) exp[ηS(y)−A(η)](S(y)−A′(η))dy

=

∫
S(y)2λ(y) exp[ηS(y)−A(η)]dy −A′(η)

∫
S(y)λ(y) exp[ηS(y)−A(η)]dy

=

∫
S(y)2p(y; η)dy −A′(η)

∫
S(y)p(y; η)dy

=

∫
S(y)2λ(y) exp[ηS(y)−A(η)]dy − A′(η)︸ ︷︷ ︸

E[S(y)]

∫
S(y)λ(y) exp[ηS(y)−A(η)]dy

= E[S(y)2]− E[S(y)]E[S(y)]
= E[S(y)2]− E[S(y)]2 (23)
= var[S(y)] definition of variance (24)

Thus, the second derivative of the log-partition function is the variance of the sufficient statistic S(y). It can be
easily verified, that for the multivariate case, we will have

∂2A(η)

∂ηi∂ηj
= E[Si(y)Sj(y)]− E[Si(y)]E[Sj(y)] (25)

where Sk(y) denotes the kth component of the vector of sufficient statistic S(y). We thus get:

∇2A(η) = cov[S(y)]. (26)

Note that earlier we had discussed that a twice differentiable function f(x) : Rn → R is convex iff ∇2f(x) ⪰ 0,
i.e. the Hessian is a positive semidefinite matrix. From eq.(26), we have that ∇2A(η) = cov[S(y)], and thus the
log-partition function is a convex-function. Where we have used the property of covariance matrices, i.e., they are
positive (semi-) definite matrices.

Next we will see the Bernoulli and Gaussian distributions examples to show how the first derivate of the
log-partition function computes the mean.
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1.2 Log Partition Function 1 EXPONENTIAL FAMILY
1.2.1 Examples: Bernoulli and Gaussian

In Bernoulli distribution, we have A(η) = log(1 + eη). The first derivative gives us

dA(η)

dη
=

d

dη
log(1 + eη)

=
eη

1 + eη

=
1

1 + e−η
(27)

= µ (28)

where eq.(28) follows from eq.(7) and eq.(27). Note that sufficient statistic S(y) = y, and µ is the expected value
of y, a Bernoulli random variable (E[y] = p(y = 1;µ)×1+p(y = 0;µ)×0 = µ). Furterhmore, the second derivative
of A(η) is

d2A(η)

dη2
=

d

dη

1

1 + e−η
=

d

dη
sigmoid(η)

= sigmoid(η)(1− sigmoid(η))
= µ(1− µ) (29)
= var[S(y)] (= var[y]; y ∼ B(µ)) (30)

In case of univariate Gaussian distribution, with σ2 = 1, we hvae A(η) = η2

2 . Thus,

dA(η)

dη
= η = µ (31)

d2A(η)

dη2
= 1 (32)

Now let us calculate the derivate for univariate Gaussian with variance σ2. In this case, A(η) = 1
2 log(2π) −

1
2 log(−2η2)−

η21
4η2

. Note that the sufficient statistic, S(y) is a vector, [y, y2]⊺. By taking the derivate with respect
to η1 gives:

∂A(η)

∂η1
=

∂

∂η1

{
1

2
log(2π)− 1

2
log(−2η2)−

η21
4η2

}
=

−2η1
4η2

=
−2 µ

σ2

−4
2σ2

= µ

which is the mean of the first component of the sufficient statistic, i.e., of y. Furthermore, the second derivate with
respect to η1 is:

∂2A(η)

∂η21
=

∂

∂η1

−2η1
4η2

(33)

=
−1

2η2
=

−1

2. −1
2σ2

(34)

= σ2 (35)

which is the variance of the first compoment, y, of the sufficient statistic.
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1.3 Sufficient Statistic 1 EXPONENTIAL FAMILY
1.3 Sufficient Statistic

In this section we only briefly discuss what is Sufficient Statistic. We do not cover the factorization theorem ex-
tensively and entirely omit the discussion on minimal sufficient statistic. Interested readers can read more about
sufficient statistic and factor theorem in a good statistic textbook.

Let {y1, ..., yn}; yi ∈ RN , is generated from some distribution p(y; θ), i.e., {y1, ..., yn} ∼ p(y; θ), where θ is some
unknown parameter of the distribution, which may not necessarily be a random variable (in Bayesian setting, we
typically assume a distribution on the parameters, in which case θ ∼ p(θ)). Furthermore, θ might be a parameter
that perhaps we would like to learn. For example, if y is a Bernoulli random variable with mean µ, i.e., y ∼ B(y;µ),
with p(y = 1;µ) = µ. Given the sample {y1, ..., yn}, perhaps we would like to estimate µ.

What is a statistic?
A statistic is any real valued function, T = r(y1, ..., yn), of the observation {y1, ..., yn}. T should not have any
unknown parameters. For example:

T1 = mean{y1, ..., yn}
T2 = max{y1, ..., yn}
T3 = 100

T4 = y1 + γ

Here the first 3 examples, T1, T2, T3, are all valid statistics. However, in T4, if γ is unknown, then it is not a
statistic. The third example is a bit strange example, as it ignored the random sample, but it still is a statistic.

1.3.1 Sufficiency

Informally, we say T is sufficient statistic (for parameter θ) if knowing the value of T is as good as knowing the
entire random sample, for estimating the value of θ. That is, the random sample contains no information about
the parameter θ beyond what is contained in T . We can put this definition more formally: T (y) is a sufficient
statistic for θ, if the conditional distribution of y given T (y) does not depend on θ.

Putting if mathematically :

Definition 1 Suppose {y1, ..., yn} ∼ p(y; θ). T is sufficient statistic for θ if the conditional distribution of
{y1, ..., yn} given T = t is independent of θ for each t:

p(y1, ..., yn|T = t; θ) = p(y1, ..., yn|T = t) =⇒ T sufficient for θ.

To see this, we can consider an example of a Bernoulli random variable y ∈ {0, 1} ∼ B(µ).

Example 1 Let {y1, ..., yn} be IID Bernoulli trials, with p(yi = 1;µ) = µ, i = 1, ..., n. Let T =
∑n

i=1 y
i = t. We

will see that T is sufficient statistic for µ.

Proof: Using Bayes theorem, we have

p(x1, ..., xn|T = t) =
p(x1, ..., xn)

p(T = t)

=
µt(1− µ)1−t(
n
t

)
µt(1− µ)1−t

=
1(
n
t

)
The conditional distribution does not involve µ, which proves

∑n
i=1 y

i is sufficient statistic for θ.
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1.3 Sufficient Statistic 1 EXPONENTIAL FAMILY
It is difficult, however, to use this defition-1 for general cases to check if a statistic is a sufficient statistic, or to
find a sufficient statistic. There is a theorem that enables us to find sufficient statistics.

Theorem 1 Factorization Theorem: Let {x1, ..., xn} be a set of random sample with joint density p(x1, ..., xn; θ).
A statistic T (x) = r(x1, ..., xn) is sufficient if an only if the joint density can be factored as follows:

p(x1, ..., xn; θ) = f(x1, ..., xn)g(r(x1, ..., xn); θ) (36)

where the functions f and g are non-negative functions. Function f may depend on x but does not depend of θ.
The function g depends on θ and depends on observed values of the samples xi; i = 1, ..., n only through the value
of sufficient statistic T (x).

Lets consider an example to see the factorization theorem.

Example 2 Let x1, ..., xn ∼ N (µ, σ2). Let xn represent the random sample set, i.e, xn = {x1, ..., xn}. Let
x̂ = 1

n

∑
i x

i. Further, assume that σ2 is known. We have

p(xn;µ, σ2) =
1

(2πσ2)
n
2

exp

{
−
∑

i(x
i − µ)2

2σ2

}
=

1

(2πσ2)
n
2

exp

{
−
∑

i(x
i − x̂+ x̂− µ)2

2σ2

}
=

1

(2πσ2)
n
2

exp

{
−
∑

i(x
i − x̂)2 + n(x̂− µ)2 − 2(x̂− µ)

∑
i(x

i − x̂)

2σ2

}
=

1

(2πσ2)
n
2

exp

{
−
∑

i(x
i − x̂)2 + n(x̂− µ)2 − 2(x̂− µ)(nx̂− nx̂)

2σ2

}
=

1

(2πσ2)
n
2

exp

{
−
∑

i(x
i − x̂)2 + n(x̂− µ)2

2σ2

}
=

1

(2πσ2)
n
2

exp

{
−
∑

i(x
i − x̂)2

2σ2

}
× exp

{
−n(x̂− µ)2

2σ2

}
=

1

(2πσ2)
n
2

exp

{
−
∑

i(x
i − x̂)2

2σ2

}
︸ ︷︷ ︸

f(xn)

× exp

{
−n(x̂− µ)2

2σ2

}
︸ ︷︷ ︸

g(T (xn);µ)

Thus, x̂ is a sufficient statistic for µ, when σ2 is known.

For general case, we have:

p(xn;µ, σ2) =
1

(2πσ2)
n
2

exp

{
−
∑

i(x
i − µ)2

2σ2

}
=

1

(2πσ2)
n
2

exp

{
−
∑

i(x
i)2 + µ2 − 2µxi

2σ2

}

=
1

(2πσ2)
n
2

exp

{
− 1

2σ2

∑
i

(xi)2 +
µ

σ2

∑
i

xi − n

2σ2
µ2

}
(37)

Thus, by factorization theorem, we have that T =
(∑

i x
2,
∑

i (x
i)2
)

is sufficient statistic for θ = (µ, σ2).

We omit the detailed discussion on factorization theorem, and minimal sufficient statistic. Interested readers can
find more information in a good statistical notebook.
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2 GENERALIZED LINEAR MODELS
2 Generalized Linear Models

Consider the linear regression example presented in earlier notes. There, we assumed that we have a dataset
D{xi, yi}; i = 1, ...,m;xi ∈ Rk, yi ∈ R, ϕ(x) ∈ RN . The goal is then to learn a mapping function Fw(ϕ(x)) : RN →
R, using the data which can be used to predict the target values ŷ given a new input data point x̂. Furthermore,
we assumed that the dataset has some noise ϵi, i.e., each of the input data-points in D follows the relation:

yi = Fw(ϕ(x
i)) + ϵi.

Furthermore, we assumed that Fw(ϕ(x)) is linear in its input, which gave us linear (in features) predictor:

yi = ϕ(xi)⊺w + ϵi

where each of the ϵ is IID. If we assume that ϵi N (0, σ2), then it results in least squares regression, or L2
2 error

minimization over the dataset D with respect to the parameters w, with optimal (MLE) solution

wmle = argmin
w

∥y−Φw∥22 (38)

Where Φ ∈ Rm×RN is the feature matrix, y ∈ Rm is a vector of target values, as discussed in the earlier lectures.
The conditional distribution of y given x is thus a Normal distribution with mean Fw(ϕ(x)), and variance σ2, i.e.,
y|x;w ∼ N (Fw(ϕ(x)), σ

2). If we assume that the noises are IID and have Lapcacian distribution with mean 0 and
diversion b, i.e., ϵi ∼ L(0, b), then the maximum likelihood estimate will result in minimization of the L1 error on
the dataset, i.e, following optimization problem:

wmle = argmin
w

∥y−Φw∥1 (39)

We have seen earlier in regularization discussion that assuming Laplacian prior on the parameter vector w results
in L1 regularized regression. Following similar steps, by computing the likelihood of the parameters and the
maximimizing the log-likelihood or minimizing the negative log-likelihood will result in (39). As we saw in the
regularized regression example, there is no closed form solution for (39) and the solution to the optimization
problem is obatained via sub-gradient descent. In the regression model, we assumed that the noise is additive,
Laplacian or Gaussian.

In the classification example, using logistic regression, we considered that y ∈ {0, 1} is a Bernoulli random
variable, with mean µ, i.e., y ∼ B(µ). The conditional distribution of y given x is is a Bernoulli distribution, with
p(y = 1|x;µ) = µ. Generalized Linear Models (GLMs) are a statistical framework, a way, to unify regression and
classification. Furthermore, GLMs allow us to easily consider other probability models, and not just Laplacian,
Gaussian or Bernoulli.

We have already seen that Gaussian and Bernoulli both can be represented as Exponential Family distributions.
We will now see that Both the linear regession and logistic regression are special cases of GLMs. Furthermore, we
will use GLMs to derive a learning algorithm known as Softmax Regression.

2.1 Constructing GLMs

Note that, in both the classification and regression problem, the goal was to predict the conditional distribution
of y given x, where the distribution is parametrized by some learnable parameters w. Again, consider a problem
(classification or regression), where again we would like to predict y given x. Also, recall that instead of learning
the mapping directly on x, we learn a mapping on ϕ(x). We will represent an exponential family distribution
with natural parameter η as ξ(η). Driving GLM for this problem will require following three assumptions, or more
accurately, design choices:

• p(y|x;w) ∼ ξ(η); i.e., the distribution of y given x, parametrized by w, follows or can be represented as
an exponential family distribution with natural parameters η, with conditional mean µ, E[y|x] = µ, where
η = Ψ−1(µ), where Ψ(.) is some real-function.
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2.2 GLMs: Softmax Regression 2 GENERALIZED LINEAR MODELS
• η = w⊺ϕ(x), where ϕ(x) is the non-linear feature function mapping ϕ(x) : x ∈ Rk → RN . This is a design

choise, in Generalized Linear Models (deriving their name). If η is a vector, then ηi = W ⊺
i ϕ(x).

• µ = Ψ(η) = Ψ(w⊺Φ(x)), where Ψ is some real function; given x, our goal is to predict expected value of the
sufficient statistic S(y)|x. In case of Bernoulli and Gaussian (with known σ2) distributions, S(y) = y. Thus,
in the cases we consider, the goal would be to predict E[y|x] = µ. We further assume that µ = Fw(ϕ(x)).
The goal, eventually, is then to predict the mapping function Fw(ϕ(x)), that predicts the E[y|x] = µ.

2.1.1 GLMs: Linear Regression with L2
2 Loss

In the linear regression with sum of suqared errors, or L2-Norm Squared (L2
2) loss function, we learned earlier that

we assume an additive Gaussian noise in the dataset. Furthermore, the E[y|x] is a Gaussian distribution.
To show that Linear Regression with L2

2 error can be expressed as GLMs, we will assume that y is continuous,
y ∈ R, and we assume that that p(y|x) is a Normal distribution, N (µ, σ2) (µ may depend on x). Thus, we will let
ξ(η) be the Gaussian distribution. Furthermore, we earlier saw that (with known σ2), S(y) = y. Also, we saw that
for Gaussian distribution, η = µ. Thus, we have:

E[S(y)|x] = E[y|x]
= µ = Fw(ϕ(x))

= η

= w⊺ϕ(x). (40)

Thus, we get that Fw(ϕ(x)) = w⊺ϕ(x) = µ, which was exactly the case in Linear Regression example. This proves
that the Linear Regression with L2

2 loss is a special case of GLMs.

2.1.2 GLMs: Logistic Regression

We now show that Logistic Regression is a special case of GLMs. We assume that y ∈ {0, 1}. Thus it is natural to
assum a Bernoulli distribution, with some mean µ, i.e., y ∼ B(µ). We thus model y|x ∼ B(µ), i.e., the conditional
distribution of y|x is a Bernoulli distribution with some mean µ. Also, recall that if y|x;w ∼ B(µ), then E[y|x] = µ
{E[y|x;w] = 1 × p(y = 1|x;w) + 0 × p(y = 0|x;w) = µ}. Furthermore, as we saw in section-1.1.1, that in case of
Bernoulli distribution, S(y) = y, and µ = Sigmoid(η). Again, we assume that µ = Fw(ϕ(x)) = E[y|x;w]. Thus,
we have:

E[S(y)|x] = E[y|x]
= µ = Fw(ϕ(x))

= Sigmoid(η)

=
1

1 + e−η

=
1

1 + e−w⊺ϕ(x) (41)

= Sigmoid(w⊺ϕ(x)). (42)

Thus, we get that Fw(ϕ(x)) = Sigmoid(w⊺ϕ(x)), which was exactly the case in Logistic Regression example. This
proves that Logistic Regression is an special case of GLMs.

2.2 GLMs: Softmax Regression

We will end the topic of Exponential Family distribution and Generalized Linear Models by deriving a learning
algorithm known as Softmax Regression. Softmax Regression generalizes Logistic Regression for multi-class clas-
sification tasks, i.e., when y is non-binary. Lets consider an example where y ∈ {1, 2, ..., q}. For example, this is
useful when the input variable x can have more than two possible labels/classes, when classifying it.
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2.2 GLMs: Softmax Regression 2 GENERALIZED LINEAR MODELS
In logistic regression, y ∈ {0, 1}, and the (stochastic-) functional mapping Fw(ϕ(x)) gives us the conditional

probability p(y = 1|x;w) = µ, p(y = 0|x; 0) = 1 − µ. We assumed that there are only two classes, 0 and 1.
Softmax Regression generalizes it to q-classes, y ∈ {1, ..., q}. To summarize Softmax Regression, we compute
the conditional probability y|x using a Softmax Function, or also known as the normalized exponential
function. The conditional probabilitities y|x (parametrized by W ∈ Rq×N ) are given by the functional mapping
(FW (ϕ(x)) = p(y|x;W )):

W =


—(w1)⊺—
—(w2)⊺—

...
—(wq)⊺—

 (43)

p(y = j|x;W ) =
exp(ϕ(x)⊺wj)∑
i exp(ϕ(x)

⊺wi)
(44)

=
exp(Wjϕ(x))∑
i exp(Wiϕ(x))

(45)

where (wj)⊺ = Wj ∈ RN is the jth row of the matrix W . We can now use the gradient descent or Newton’s Method
to maximize the likelihood of the parameters, to compute W ⋆ = WMLE. Furthermore, wq = 0, which we will see
later. We will now construct a GLM to derive the formulations for Softmax Regression learning algorithm.

2.2.1 Softmax Regression as GLM

y is discrete and can have multiple values, and thus we will model it as a Multinomial distribution. The multinomial
distribution over q possible values of y can be parametrized using q parameters, µ1, µ2, ..., µq, where µi = p(y =
i|x;W ). Also µi; i = 1, ..., q, satsify:

q∑
j=1

µj = 1. (46)

Using constraint-46, the number of parameters can be reduced to q − 1, as µq = 1 −
∑q−1

j=1 µj . For notational
convenience in the derivation below, we will assume that µq = 1−

∑q−1
j=1 µj , but note that µq is not a parameter,

and it can computed by µ1, ..., µq−1. In case of Logistic regression, the sufficient statistic S(y) = y. To express a
multinomial distribution as an exponential family distribution we define S(y) ∈ Rq−1 as follows:

S(y = 1) =


1
0
...
0

 ;S(2) =


0
1
...
0

 , . . . , S(q − 1) =


0
0
...
1

 , S(q) =


0
0
...
0

 . (47)

We can further represent S(y) more effectively using an Indicator function. An indicator function I{E}, is equal
to 1 if the event E is true, and is equal to 0 if the event E is false. We can thus write the sufficient statistic S(y)
more compactly as:

S(y) =


I{y = 1}
I{y = 2}

...
I{y = q − 1}

 . (48)

Our goals is now to compute the conditional expectation of the Sufficient Statistic S(y) given x. We can see that
the expected value of the sufficient statistic, which is a q− 1 dimensional vector, is given by the µi, ; i = 1, ..., q− 1.
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2.2 GLMs: Softmax Regression 2 GENERALIZED LINEAR MODELS
We can show this mathematically, for the ith component of the sufficient statistic S(y)i, as:

E[S(y)i|x] = E[I{y = i}|x] = p(y = i|x) = µi (49)

Thus, our goal is to learn the stochastic functional mapping FW (ϕ(x)), which computes the vector of conditional
probabilities µi = p(y = i|x;W ); i = 1, ..., q. Note that we will only compute µi; i = 1, ..., q − 1, and then
µq = 1−

∑q−1
i=1 µi. This mapping function will be the Softmax function or the normalized exponential function. We

will now express the multinomial distribution as an Exponential Family Distribution (ξ(η)) with natural parameter
η ∈ Rq−1. Hereafter µ = [µ1, ..., µq]

⊺, where µq can be computed using µ1, ..., µq−1 as discussed earlier. We have

p(y;µ) =

q∏
i=1

p(y = 1;µ)I{y=i} (50)

=

q∏
i=1

µ
I{y=i}
i (51)

=

{
q−1∏
i=1

µ
I{y=i}
i

}
µI{y=q}
q (52)

=

{
q−1∏
i=1

µ
S(y)i
i

}
µ
1−

∑q−1
j=1 S(y)j

q (53)

= exp

q−1∑
i=1

S(y)i log(µi) +

1−
q−1∑
j=1

S(y)j

 log(µq)

 (54)

= exp

(
q−1∑
i=1

S(y)i log

(
µi

µq

)
+ log(µq)

)
(55)

= λ(y) exp{η⊺S(y)−A(η)} (56)

which gives us

η =


log
(
µ1

µq

)
log
(
µ1

µq

)
...

log
(
µq−1

µq

)

 (57)

A(η) = − log(µq) (58)
λ(y) = 1. (59)

Thus, the multinomial distribution belongs the the exponential family distribution with above parameters. For
convenience, we can define η ∈ Rq with ηq = log

µq

µq
= 0. From the equations above, we can now obtain µ as:

ηi = log

(
µi

µq

)
=⇒ µqe

ηi = µi. (60)

By summing over all the i = 1, ..., q, we get:
q∑

i=1

µqe
ηi =

q∑
i=1

µi = 1 (61)

=⇒ µq =
1∑q

i=1 e
ηi

(62)
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2.2 GLMs: Softmax Regression 2 GENERALIZED LINEAR MODELS
Substituting the result (eq-62) back into eq-60 gives us:

µi = µqe
ηi =⇒ µi =

eηi∑q
j=1 e

ηj
(63)

This functional mapping, µ = Ψ(η), i.e., µi =
eηi∑q

j=1 e
ηj , from η to µ is known as Softmax Function, as discussed

in earlier section, see eq-44 and eq-45. To obtain the results of eq-45, we use the assumption number 2 in GLMs,
discussed in section-2.1, i.e., η is a linear function of the input x or equivalently of the feature function representation
of x, ϕ(x). Thus, we have that ηi = ϕ(x)⊺wi, i = 1, ..., q− 1, where wi are the parameters for the ith class/label are
the parameters of the model. We also define wq = 0 a vector of 0s, which gives us ηq = wq⊺ϕ(x) = 0, as discussed
earlier.

We can summarize it as follows:

µi =
eϕ(x)

⊺wi∑q
j=1 e

ϕ(x)⊺wj (64)

µq =
1∑q

j=1 e
ϕ(x)⊺wj (65)

where wi ∈ RN ; i = 1, ..., q− 1 are the model parameters, and wq = 0 (not a model parameter, mentioned only for
convenience) is an N -dimensional vector with all its components being 0. We can define an q ×N matrix W (last
row is not a model parameter, represented only for convenience), which contains all these model parameters as:

W =


—(w1)⊺—
—(w2)⊺—

...
—0⊺—


q×N

(66)

Furthermore, our functional mapping FW (ϕ(x)) is given by:

FW (ϕ(x)) = E[S(y)|x]

= E




I{y = 1}
I{y = 2}
I{y = 3}

...
I{y = q − 1}

 x

 (67)

=


µ1

µ2

µ3
...

µq−1

 (68)

=



eϕ(x)
⊺w1∑q

j=1 e
ϕ(x)⊺wj

eϕ(x)
⊺w2∑q

j=1 e
ϕ(x)⊺wj

eϕ(x)
⊺w3∑q

j=1 e
ϕ(x)⊺wj

...
eϕ(x)

⊺wq−1∑q
j=1 e

ϕ(x)⊺wj


(69)
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3 SOFTMAX REGRESSION
Thus, the functional mapping FW (ϕ(x)) : RN → [0, 1]q−1 gives us the class probabilities. It is thus a stochastic
function, which generates the conditional probabilities y|x. Althoug it doesn’t directly provide µq but it can be
computed simply as µq = 1−

∑q−1
j=1 µj . Furthermore, with our notation of W , whose last row is a vector of 0s, we

can assume that the FW (ϕ(x)) produces q dimensional output as, FW (ϕ(x)) : RN → [0, 1]q:

FW (ϕ(x)) =



eϕ(x)
⊺w1∑q

j=1 e
ϕ(x)⊺wj

eϕ(x)
⊺w2∑q

j=1 e
ϕ(x)⊺wj

eϕ(x)
⊺w3∑q

j=1 e
ϕ(x)⊺wj

...
eϕ(x)

⊺wq−1∑q
j=1 e

ϕ(x)⊺wj

1∑q
j=1 e

ϕ(x)⊺wj


(70)

We thus obtain the same result, after deriving the Softmax Regression using GLMs, as mentioned in eq-45. This
finishes our discussion on Generalized Linear Models.

3 Softmax Regression

Having presented the Softmax Regression learning algorithm, which can be used for multi-class classification tasks,
we will now see how we can learn the parameters using the gradient descent algorithm. Assume that we have a
dataset D{xi, yi}; i = 1, ...,m;x ∈ Rk, y ∈ {1, 2, 3, ...,K}. Given the feature function ϕ(x) : Rk → RN , the goal is
to learn FW (ϕ(x)) : RN → [0, 1]K, where [0, 1]K represents a K-dimensional vector, with each component of the
vector beglonging to set [0, 1]. The conditional probabilities are p(y|x;W ) = µi =

eWiϕ(x)∑K
j=1 e

Wjϕ(x)
, where Wi is the ith

row of the matrix W ∈ RK×N .
We can compute the maximum likelihood estimate (MLE) of the parameters W by maximizing the likelihood

function L(W ), as we did in Logistic Regression:

L(W ) =

m∏
i=1

p(yi|xi;W ) (71)

LL(W ) = logL(W ) =

m∑
i=1

log p(yi|xi;W ) (72)

=

m∑
i=1

log

K∏
j=1

µi
j
I{yi=j} (73)

=

m∑
i=1

log

K∏
j=1

(
eWjϕ(x

i)∑K
s=1 e

Wsϕ(xi)

)I{yi=j}

(74)

where Wl is a row vector (lth-row of matrix W ), which is (wl)
⊺
, l = 1, ...,K. We can maximize the log-likelihood

function, LL(W ), to obtain the MLE estimate of the parameters W . This can be done using algorithms like
Gradient Descent or Netwon’s Method.

3.1 Maximizing Log Likelihood: Gradient Descent

We have the log-likelihood function LL(W ) given in eq-74. To compute the update rule for gradient descent algo-
rithm, we have to compute the gradients of the log-likelihood funtions, ∇W LL(W ), with respect to the parameters
wi; i = 1, ...,K. We can represent ϕ(xi)⊺wj as zji to simplify the notations.
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3.1 Maximizing Log Likelihood: Gradient Descent 3 SOFTMAX REGRESSION
Thus we get:

LL(W ) =
m∑
i=1

log
K∏

j=1

(
ez

j
i∑K

s=1 e
zsi

)I{yi=j}

(75)

We can use the chain rule of differentiation to compute the ∇wj LL(W ) as:

∇wj LL(W ) =
∂ LL(W )

∂zj
× ∂zj

∂wj
. (76)

Furthermore
∂zj

∂wj
=

ϕ(x)⊺wj

∂wj
= ϕ(x). (77)

Having all the basic mathematical expressions in place, we can now compute the gradient ∇wj LL(W ). Also, there
would be two cases: (i) yi = j and (ii) yi ̸= j.

Case-1: yi = j

∇wj LL(W ) =
∂

∂zj

m∑
i=1

log

 K∏
j=1

(
ez

j
i∑K

s=1 e
zsi

)I{yi=j}
×

ϕ(xi)︷︸︸︷
∂zji
∂wj

 (78)

=
m∑
i=1

 ∂

∂zj
log

 K∏
j=1

(
ez

j
i∑K

s=1 e
zsi

)I{yi=j}
× ϕ(xi)

 (79)

=

m∑
i=1

(
∂

∂zj
log

[(
ez

j
i∑K

s=1 e
zsi

)]
× ϕ(xi)

)
(80)

=

m∑
i=1

∑K
s=1 e

zsi

ez
j
i

(
∂

∂zj
ez

j
i∑K

s=1 e
zsi

)
× ϕ(xi) (81)

=

m∑
i=1

∑K
s=1 e

zsi

ez
j
i

(
ez

j
i∑K

s=1 e
zsi

+ ez
j
i
∂

∂zj
1∑K

s=1 e
zsi

)
ϕ(xi) (82)

=

m∑
i=1

∑K
s=1 e

zsi

ez
j
i

 ez
j
i∑K

s=1 e
zsi

− ez
j
i ez

j
i(∑K

s=1 e
zsi

)2
ϕ(xi) (83)

=

m∑
i=1

(
1− ez

j
i∑K

s=1 e
zsi

)
ϕ(xi) (84)

=

m∑
i=1

(
1− eϕ(x

i)⊺wj∑K
s=1 e

ϕ(xi)⊺ws

)
ϕ(xi) (85)
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3.1 Maximizing Log Likelihood: Gradient Descent 3 SOFTMAX REGRESSION
Case-2: yi = a ̸= j

∇wj LL(W ) =
m∑
i=1

∑K
s=1 e

zsi

ez
a
i

(
∂

∂zj
ez

a
i∑K

s=1 e
zsi

)
× ϕ(xi) (86)

=

m∑
i=1

∑K
s=1 e

zsi

ez
a
i

(
ez

a
i

∂

∂zj
1∑K

s=1 e
zsi

)
× ϕ(xi) (87)

=

m∑
i=1

∑K
s=1 e

zsi

ez
a
i

− ez
a
i ez

j
i(∑K

s=1 e
zsi

)2
ϕ(xi) (88)

=

m∑
i=1

−ez
j
i∑K

s=1 e
zsi
ϕ(xi) (89)

=

m∑
i=1

−eϕ(x
i)⊺wj∑K

s=1 e
ϕ(xi)⊺ws

ϕ(xi) (90)

Having derived the results for both the cases, we can now combine the results to obtain the gradient ∇wj LL(W ).
By combining eq-85 and eq-90, we get:

∇wj LL(W ) =

[
m∑
i=1

(
1− eϕ(x

i)⊺wj∑K
s=1 e

ϕ(xi)⊺ws

)
I{yi = j}+

m∑
i=1

−eϕ(x
i)⊺wj∑K

s=1 e
ϕ(xi)⊺ws

I{yi ̸= j}

]
ϕ(xi) (91)

We can simplify it further as:

∇wj LL(W ) =

m∑
i=1

[(
1− eϕ(x

i)⊺wj∑K
s=1 e

ϕ(xi)⊺ws

)
I{yi = j} − eϕ(x

i)⊺wj∑K
s=1 e

ϕ(xi)⊺ws
I{yi ̸= j}

]
ϕ(xi) (92)

=
m∑
i=1

I{yi = j} − eϕ(x
i)⊺wj∑K

s=1 e
ϕ(xi)⊺ws

I{yi ̸= j}+ I{yi = j}︸ ︷︷ ︸
1

ϕ(xi) (93)

=

m∑
i=1

[
I{yi = j} − eϕ(x

i)⊺wj∑K
s=1 e

ϕ(xi)⊺ws

]
ϕ(xi) (94)

=

m∑
i=1

[
δij −

eϕ(x
i)⊺wj∑K

s=1 e
ϕ(xi)⊺ws

]
ϕ(xi) (95)

Where δij = I{yi = j}. Thus, we can compute the parameters, using the Batch-Gradient Descent algorithm, which
uses all the training data at once to compute one update for the parameters. We can instead used mini-batch or
stochastic gradient descent, which updates the parameters after observing every training data point as:

∇wj LL(W ;Di) =

(
δij −

eϕ(x
i)⊺wj∑K

s=1 e
ϕ(xi)⊺ws

)
ϕ(xi) (96)

Where ∇wj LL(W ;Di) is the gradient with respect to wj ; j = 1, ...,K for the ith training data-point in the dataset
D. Eq-96 gives the update rule for the stochastic gradient descent algorith, for the parameters wj .

Furthermore, as discussed earlier wK = 0. Thus, all the other weights can be initially initialized to random
values, and wK can be initialized to 0 and then after every stochastic gradient descent step, wK will be shifted to
some value ̸= 0. We can thus, after every step of stochastic gradient descent, project wK to 0, or simply reset them
to 0. This completes our discussion of batch gradient descent, and stochastic gradient descent for the Softmax
Regression.
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